

115/34.5kV Solar Plant & Substation

Client: Black & Veach: Adam Schroeder, Elymus Schaffer, Utsavee Desai Faculty Advisor: Venkataramana Ajjarapu

Andrew M Chizek, David W Ntako, Ben Palkovic, Mohamed A Sam, Sergio Sanchez Gomez & Dallas R Wittenburg Senior Design Team 41 05/09/2025

Department of Electrical and Computer Engineering

Group Roles

- Andrew Chizek: Researcher and Drafter
- David Ntako: Researcher and Drafter
- Ben Palkovic: Meeting Recorder and Drafter
- Mohamed Sam: Testing and submission
- Sergio Sanchez Gomez: Technical Writer and Editor
- Dallas Wittenburg: Client and Advisor Communications

Department of Electrical and Computer Engineering

Project Overview

Fall Semester: Solar Farm

Spring Semester: Substation

 Make a complete design of a solar farm and substation including all drawings, calculations, and tests needed for construction

Department of Electrical and Computer Engineering

Project Motivation

Users

- Utility companies
- Citizens who use electricity

Needs

- Clean energy
- Uninterrupted supply of power
- Optimal use of land and budget
- Adhere to all safety codes and regulations
- Sustainable

Department of Electrical and Computer Engineering

Project Plan

Phase 1 (Week 1-3) Collect data sheets for PV cells and solar farm compoenents	ise 1 Phase 2 eek 1-3) (Week 4-6) lect data sheets for cells and solar farm npoenents power plant		Phase 4 (Week 10-12) Perform voltage-drop calculations and economic analysis	Phase 5 (Week 13-15) Simulate solar circuit and analyze power flow			
Research	Planning	Designing	Calculation	Simulation			
Phase 1 (Week 1-3) Collect data sheets for substation equipment	Phase 2 (Week 4-6) Finalize equipment for substation	Phase 3 (Week 7-9) Design of one-line diagram of the substation	Phase 4 (Week 10-12) Perform power flow calculation and economic analysis	Phase 5 (Week 13-15) Simulate solar farm and substation power flow			
Research	Planning	Designing	Calculation	Simulation			

115/34.5kV Solar Plant & Substation Senior Design Project

Sergio

Department of Electrical and Computer Engineering

Deliverables

Fall Semester: Solar Farm

- Array Parameter Tool
- String, Rack, and Array Layouts
- Plant Characteristics
- Voltage Drop Calculations
- Datasheets
- Site Selection

Spring Semester: Substation

- One-Line
- Equipment Layout
- Grounding Study and Calculations
- AC and DC Calculations
- ETAP Simulations

Department of Electrical and Computer Engineering

Solar Site Selection

Deming, New Mexico

- Optimal cost
- High solar irradiance
- Barren, useless land
- Nearby high voltage

transmission lines

Department of Electrical and Computer Engineering

Solar Array Overview

Combiner Box

1500 V

•

PV Modules· 700₩

.

- Voc: 47.9 V · 320 A
- Isc: 18.49 A

- Inverter
 - 1500 V input
 - 4095 kW

115/34.5kV Solar Plant & Substation Senior Design Project

David

Department of Electrical and Computer Engineering

Solar Array Overview

Array Parameter Tool

		String Size			Electrical Rack Size				CB capacity			Array Design			Array Size		
				Designer													
				Choice		Landscape											
	Location							Datasheet			Designe	r		Designer			
	Dependent	Min Temp	4.44 C	Datasheet	Module width	7.82	ft	(STC)	mod/string lsc	18.49	A Choice	Racks per row	5	Choice	tilt	30	
				Datasheet	module height	4.27	ft	NEC secti	cmultiplier	1.25							
	Datasheet										Designe	r					
	(STC)	Voc	47.9 V						nom lsc	23.1125	Choice	rows per Array	26		table height proj	7.395857 ft	
	Datasheet			Designer													
	(STC)	Ref temp	25 C	Choice	Rack width	29	modules	Irr.	multiplier	1.25							
				Designer							Designe	r		Designer			
				Choice	Rack height	2	modules		max lsc	28.89063	A Choice	Racks removed	0	Choice	row space	9 ft	
	Datasheet	Temp Coeff of Voc	-0.0029 /C		Modules per rack												
		Temp delta	-20.56		Rack width	226.78	ft	Designer	allowed current	320	A	Total Racks/Array	130		pitch	16.39586 ft	
		temp correction	1.06		Rack height	8.54	ft	Choice:	is this disconnect	: A?					Space for Inverter Maintenance	ft	
		V0c corrected	50.75599					200,	strings per CB	11.07626		Total modules	7540		Array height	426.2923 ft	
								400A etc	. Round down:	11							
Confirm		string voltage	1500 V						racks per CB	5.5	Datashee (STC)	t module capacity	700	w	Array width	1133.9 ft	
possible	Designer	String size	29.55316												Ground Coverage Ratio	0.520863	
with	Choice:	string size	29									dc capacity	5278	kW			
Panel	600, 1000,	Actual String Voltage	1471.9														
type	1500,										Designe	r					
chosen	2000V										Choice	inverter capacity	4095	kW			
														MVA			
											Provideo	ILR	1.288889				
											Industr	/					
		Input Information =									standar	b					
											1.3						

115/34.5kV Solar Plant & Substation Senior Design Project

David

05/09/2025

Department of Electrical and Computer Engineering

Solar Farm Overview

115/34.5kV Solar Plant & Substation Senior Design Project

Andrew

05/09/2025

Department of Electrical and Computer Engineering

Solar Array Overview

Mohamed

05/09/2025

Voltage Drop Calculations

Table 8 NEC

IOWA STATE UNIVERSITY

DCB	Strings per Rack	IMP for String	String Length	String wire size	String Conductor resistance	String resistance	Voltage Drop of String	IMP for Jumper	Jumper Length	Jumper wire size	Jumper resistance	Jumper resistance	Voltage Drop of Jumper	Voltage Drop of String	Voltage Drop of Jumper
DCB#-##	per rack	Атр	feet	AWG	Ohm/kft	Ohm	Volts	Amp	feet	AWG	Ohm/kft	Ohm	Volts	percent	percent
DCB1-01	2	14	226.87	10	1.2400	0.5448151	7.8769264	28	569	8	0.7640	0.8409313	24.344096	0.525128427	1.622939733
DCB1-02	2	14	226.87	10	1.2400	0.5448151	7.8769264	28	342	8	0.7640	0.5061071	14.632128	0.525128427	0.9754752
DCB1-03	2	14	226.87	10	1.2400	0.5448151	7.8769264	28	115	8	0.7640	0.1703152	4.92016	0.525128427	0.328010667
DCB1-04	2	14	226.87	10	1.2400	0.5448151	7.8769264	28	342	8	0.7640	0.5061071	14.632128	0.525128427	0.9754752
DCB1-05	2	14	226.87	10	1.2400	0.5448151	7.8769264	28	569	8	0.7640	0.8409313	24.344096	0.525128427	1.622939733
								G. (1)							

from Array
Parameter panels in string' IMP x 1.25
AWG size above that
$$V_d = \frac{I \times 2 \times d}{1000 \text{ ft} / \text{kft}} \times 1000 \text{ ft}$$

Where:

Combiner

Name

- V_{d}
- d
- 1
- Ω//kft

- = voltage drop
- = route length of dc cable in feet (2 x adjusts for total circuit wire length)

Table 8 NEC

 $\frac{\Omega}{kft}$

- = dc current in amperes (commonly Imp)
- = ohms/thousand feet (resistance)

Voltage drop (in percentage) =
$$\frac{V_d}{V_{MAX}} \times 100$$

Mohamed

05/09/2025

Department of Electrical and Computer Engineering

Substation Overview

Ring Bus Configuration

Pros

•

- Very Reliable
- Flexible

Cons

- Complex relaying
- More land
- More expensive

Department of Electrical and Computer Engineering

Relaying Plan

Key Components

- Voltage Transformer (VT)
- Current Transformer (CT)
- Relays
 - Line Protection: SEL 311L and 311C
 - Feeder and BF:
 - SEL 751 and 352
 - Transformer Prot: 487E and 587

Department of Electrical and Computer Engineering

Key Plan

115/34.5kV Solar Plant & Substation Senior Design Project

Andrew

05/09/2025

Department of Electrical and Computer Engineering

Key Plan

Things to Consider

- Bus spacing
- Phasing
- Land constraints

115/34.5kV Solar Plant & Substation Senior Design Project

Andrew

Department of Electrical and Computer Engineering

Key Plan

Things to Consider

- Bus spacing
- Phasing
- Component sizes

Department of Electrical and Computer Engineering

AC calculations

		AC	STUDY								
		Quantity	Load/Unit (W)	Amps (ea)	Voltage (V)	Total (W)	Amps Total				
	Breaker Recepticle and Lights	8	210	1.75	120	1680	14.00				
	Transformer Fans	2	24000	100	240	48000	200.00				
	Transformer Sump Pump	2	2000	8.333333	240	4000	16.67				
	Control House Lighting	20	36	0.3	120	720	6.00				
	Yard Lights (Assuming lights are off)	8	55	0.458333	120	440	3.67				
ing	HVAC System	1	10000	41.66667	240	10000	41.67				
uild	Fire Detection Equipement	1	150	1.25	120	150	1.25				
ol Bı	Exhaust Fan	1	132	1.1	120	132	1.10				
ntro	AC Battery Charger	1		0	240	0	0.00				
ů	Power Outlet	10	180	1.5	120	1800	15				
- ləı	Breaker Heaters	8	640	5.333333	120	5120	42.666667				
Par				0	1	0	0				
AC				0	1	0	0				
		VVC		lg	0.40	700					
	High Side Breaker Irip	1	720	3	240	/20	3				
	Low Side Breaker Trip	2	/20	3	240	1440	6				
	Total Wor	72042	342.02								
			79246.2	376.21833							

Sergio

05/09/2025

80 kVA station service transformer 450 A MTS

Department of Electrical and Computer Engineering

DC calculations

Components	Load Current (A)	Nominal Voltage (V) DC	Inception and Active Shutout Time	Number of components	Total Load Current (A)	Power Requirement	Power (Units)
34.5kV Breaker:	Tripping Current: 3.3	70 - 140	0 1	G	Tripping Current:19.8	343	W
	Closing Current: 2.6	90 - 140	0-1	D	Closing Current :15.6	364	W
115kV Breaker:	Tripping Current : 6.6	125	220 240	n	Tripping Current: 13.2	1050	W
	Closing Current: 3.6	125	239-240	Z	Closing Current : 7.2	950	W
SEL-311C	0.20	125	1 - 240	8	1.60	25	W
SEL-311L	0.20	125	1 - 240	8	1.60	25	W
SEL-587	0.044	125	1 - 240	2	0.08	6	W
SEL-487E	0.280	125	1 - 240	2	0.56	35	W
Battery Monitoring Equipment	0.024	50 -180	1 - 240	1	0.02	6	VA
DC Ammeter	0.048	125	1 - 240	1	0.048	3	VA
DC Voltmeter	0.048	120	1 - 240	1	0.048	3	VA
SACO Annunciator (L8)	0.150	125	1 - 240	2	0.30	15	W
Edwards Bell	0.012	125	1 - 240	1	0.012	1.5	VA
Power Line Indicating Lamps (LEDs)	0.017	125	1 - 240	8	0.136	2.125	W
60 Cell Sysem		Con	tinuous Load		Discontinuous Load Curre	ent	
			4.404A		19.8 A		
Power Supply Burden(N)		t=240min		t = 1 min		
			4.404 A		37.404		

IEEE-485

115/34.5kV Solar Plant & Substation Senior Design Project

Sergio

Department of Electrical and Computer Engineering

Standards

IEEE Standards

- IEEE 80 Grounding
- IEEE 485 Lead acid battery sizing
- IEEE 605 Bus design

NEC Standards

- Section 210-20(a) Overcurrent protection devices
- Section 110-14(c) Conductor Sizing

David

Department of Electrical and Computer Engineering

Testing

	Generation B	Bus	Volta	ige		Generation	Mvar Limits			
ID	kV	Туре	Sub-sys	% Mag.	Angle	MW	Mvar	% PF	Max	Min
Bus_3	34.500	Mvar/PF Control	1	100.0	0.0	11.885	0.000	100.0		
Bus_4	34.500	Mvar/PF Control	1	100.0	0.0	15.846	0.000	100.0		
Bus_5	34.500	Mvar/PF Control	1	100.0	0.0	15.846	0.000	100.0		
Bus_6	34.500	Mvar/PF Control	1	100.0	0.0	15.846	0.000	100.0		
Bus_7	115.000	Swing	1	100.0	0.0					
Bus_8	115.000	Swing	1	100.0	0.0					
						59.423	0.000			

The generation totals to **59.423 MW**, which is nearly the target **60 MW** design goal.

All voltages are regulated at **100%**, and reactive power is **0.000 MVAR**, confirming the power factor is 1.0 across all generator buses.

Mohamed

05/09/2025

Department of Electrical and Computer Engineering

Conclusions

Group Member Contributions

- Andrew Chizek: Component Selection, Section Views, Grounding Physical Drawings
- David Ntako: Component Selection, DC Calculation
- Ben Palkovic: One-Line Diagram, Physical and Relaying, Key Plan, Section Views
- Mohamed Sam: ETAP, Load Flow & Short Circuit, Three-Line Diagram
- Sergio Sanchez Gomez: DC Calculation, Battery Sizing, BOM
- Dallas Wittenburg: Substation Grounding, Layout, Conduit Plan, ETAP

<u>All Members:</u> Weekly Meetings, Rotating Leadership Roles

Department of Electrical and Computer Engineering

THANK YOU

Senior Design Team 41 05/09/2025